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1. INTRODUCTION

Following Adler’s (1995) formalization of Feynman’s basic observations
(Feynman and Hibbs, 1965) concerning quantum probabilities, let us recall that
a key feature of quantum probabilities consists in that they don’t obey the usual
formula of probabilities’ composition:

Pca =
∑

b

Pcb · Pba (1.1)

but a formula for probabilities amplitudes’s composition:

�ca =
∑

b

�cb · �ba (1.2)

where the probabilities amplitudes �’s take value on a finite dimensional algebra
A over R (Shafarevich, 1997) on which a modulus function N : A �→ R is defined
such that:

Pb a = N2(�b a) (1.3)

Pc b = N2(�c b) (1.4)
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�c a = N2(�b a) (1.5)

where both the algebra A and the modulus function has to be determined imposing
reasonable physical and mathematical constraints.

From a mathematical side it is natural to require that N is a norm over A.
From a physical side the imposition of the Correspondence Principle requires

that, in the absence of quantum interference effects, probability amplitude super-
position (i.e. Eq. (1.2)) should reduce to probability superposition (i.e. Eq. (1.1)).
This leads (cfr. Adler, 1995 for details) to the condition that the norm N has to be
multiplicative.

One has that:

Theorem 1.1. (Albert’s Theorem)

HP:

A finite dimensional algebra with unit over R

N multiplicative norm over A

TH:

A ∈ {R, C, H, O}
where H is the (noncommutative) algebra of Hamilton’s quaternions and O is
the (noncommutative and nonassociative) algebra of Cayley’s octonions whose
definition we briefly recall.

The generic element of an (n + 1)-dimensional algebra with unit A may be
expressed as:

� =
n∑

i=0

riei (1.6)

where e0 = 1, . . . , en are the basis elements of the algebra obeying multiplication
law:

ei · ej =
n∑

k=0

fijkek i, j = 0, . . . , n (1.7)

with the real-valued structure constant fijk’s obeying the following constraints:

f0ij = δij i, j = 0, . . . , n (1.8)

fi0j = δij i, j = 0, . . . , n (1.9)

that may be immediately derived imposing that:

ei · e0 = e0 · ei = e0 i = 0, . . . , n (1.10)
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The algebra of quaternions H corresponds to the case n = 3 and:

ei · ej = −δij +
3∑

k=1

εijkek (1.11)

where εijk is the Levi Civita’s tensor, i.e. the totally antisymmetric tensor with
ε123 = 1.

A multiplicative norm on H is given by:

N

(
3∑

i=0

riei

)
=

√√√√
3∑

i=0

r2
i (1.12)

The algebra of octonions O corresponds to the case n = 7 and:

ei · ej = −δij +
3∑

k=1

γijkek (1.13)

where γijk is the totally antisymmetric tensor such that:

γ123 = γ246 = γ435 = γ367 = γ651 = γ572 = γ714 = 1 (1.14)

A multiplicative norm on O is given by:

N

(
7∑

i=0

riei

)
:=

√√√√
7∑

i=0

r2
i (1.15)

Let us observe, anyway, that from a physical viewpoint it seems rather natural
to require that:

�a b · �b c = �b c · �a b (1.16)

that leads to the constraint that A has to be commutative; so, by Albert Theorem,
A ∈ {R, C}.

Since R is to strict to allow all the superpositions of states observed experi-
mentally, it follows that Nature has chosen A = C.

Let us now observe that, with the exception of the non-associative octonions’
algebra O, the algebras allowed by Albert’s Theorem are finite-dimensional real
Clifford algebras (Gurlebeck and Sprossig, 1997):

R = Cl0,0 (1.17)

C = Cl0,1 (1.18)

H : = Cl0,2 (1.19)

To understand better the structural properties of the choice of Cl0,1 made by
Nature, it may be interesting to investigate how the mathematical structure of
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Quantum Mechanics is modified by the ansatz:

Cl0,1 �→ Cl1,0 (1.20)

corresponding, in terms of the structure constants, to the ansatz:

f111 = 0 f110 = 1 �→ f111 = 0 f110 = −1 (1.21)

Since, as we have shown in Khrennikov and Segre (2005), there are many reasons
to call G := Cl1,0 the hyperbolic algebra, we will denote the Cl1,0-Quantum,
Mechanics as Hyperbolic Quantum Mechanics.

Such a mathematical theory emerged in the research of one of the authors
(Khrennikov, 2003a, 2003b, 2004) and of other scientists (see Kocik, 1999; Rochon
and Tremblay, 2004; Ulrych, 2005a, 2005b, 2005c; Xuegang, 2000; Zheng and
Xuegang, 2004 and references therein).

Let us observe, first of all, that the modulus function:

N

(
1∑

i=0

riei

)
:=

√√√√
1∑

i=0

r2
i (1.22)

is a norm, though not multiplicative.

Remark 1.1. We would like to stress, from the physical point of view, that we
are in no way claiming that Quantum Mechanics, as a physical theory, is wrong
or has to be modified.

We are simply analyzing an alternative mathematical theory whose structure
could allow to get some insight of the Cl0,1-choice made by Nature.

2. THE HYPERBOLIC ALGEBRA

Let us define the hyperbolic algebra as the ring G of numbers of the form
x + jy, where x, y ∈ R while j, called the hyperbolic imaginary unit, is such that
j 2 = +1.

The elements of such an algebra has been called in the mathematical literature
with different names (cfr. Jancewicz, 1996 and references therein): hyperbolic
numbers, double numbers, split complex numbers, perplex numbers, and duplex
numbers.

We will call them hyperbolic numbers and we will refer to j as to the hyper-
bolic imaginary unit.

The complex field C and the hyperbolic ring G are the two bidimensional
Clifford algebras (Khrennikov and Segre, 2005):

C = Cl0,1 (2.1)

G = Cl1,0 (2.2)
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Given z = x + jy ∈ G:

Definition 2.1. (Conjugate of z)

z̄ := x − jy

Definition 2.2. (Norm of z)

‖z‖ :=
√

x2 + y2

Definition 2.3. (Light Cone of z)

Vz := {z′ = x ′ + jy ′ ∈ G : y ′ = ±(x ′ − x) + y}
One has that:

Theorem 2.2.

• G is a commutative ring
• G is not a field

Proof:

1. by definition the addition and the multiplication in G are commutative and
associative, the multiplication is distributive with respect to the addition,
there exists a null element 0 with respect to addition, there exists an
identity element 1 with respect to multiplication and every element of G

has an additive inverse
2. given z = x + jy ∈ G one has formally that:

1

z
= 1

x + jy
= x

x2 − y2
− j

y

x2 − y2
(2.3)

and hence:

∃z−1 ⇔ z /∈ V0 (2.4)

So not every nonzero element of G has a multiplicative inverse and hence
G is not a field

�

One has clearly that:

Proposition 2.1.

‖z‖2 	= zz̄ ∀z ∈ G − R
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Proof: Given z = x + jy ∈ G − R one has that

‖z‖2 = x2 + y2 	= zz̄ = x2 − y2 (2.5)

�

3. HYPERBOLIC HILBERT SPACES

Let us start introducing the following:

Definition 3.1. (Hyperbolic Linear Space) a triple (V,+, ·) where V is a set while
+ : V × V �→ V and · : G × V �→ V are such that:

u + v = v + u ∀u, v ∈ V

(u + v) + w = u + (v + w) ∀u, v,w ∈ V

∃0 ∈ V : u + 0 = u ∀u ∈ V

λ(u + v) = λu + λv ∀u, v ∈ V,∀λ ∈ G

(λ + µ)u = λu + µu ∀u ∈ V,∀λ,µ ∈ G

1u = u ∀u ∈ V

We can then introduce the following:

Definition 3.2. (Hyperbolic Inner Product Space) a quatruple (V,+, ·, (·, ·)) such
that:

• (V,+, ·) is an hyperbolic linear space
• (·, ·) : V × V �→ G is such that:

(u, v + w) = (u, v) + (u,w) ∀u, v,w ∈ V

(u, λv) = λ(u, v) ∀u, v ∈ V,∀λ ∈ G

(u, v) = (v, u) ∀u, v ∈ V

Example 3.1. Let G
n denote the set of all n-ples of hyperbolic numbers; given

x = (x1, . . . , xn), y = (y1, . . . , yn) ∈ G
n define:

(x, y) :=
n∑

i=1

x̄iyi (3.1)

(Gn, (·, ·)) is then an hyperbolic inner product space
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Given an hyperbolic inner-product space (V,+, ·, (·, ·)) and a linear operator
U : V �→ V :

Definition 3.3. (U is Unitary)

(Ux,Uy) = (x, y) ∀x, y ∈ V

Definition 3.4. (Hyperbolic Normed Linear Space) a couple (V, ‖ · ‖) where:

• V is an hyperbolic linear space
• ‖ · ‖ is a map ‖ · ‖ : G �→ R such that:

‖v‖ ≥ 0 ∀v ∈ V

‖v‖ = 0 ⇔ v = 0

∃c ∈ R+ : (‖αv‖ ≤ c‖α‖‖v‖ ∀v ∈ V,∀α ∈ G)

‖u + v‖ ≤ ‖u‖ + ‖v‖ ∀u, v ∈ V

Given two hyperbolic normed linear spaces (V1, ‖ · ‖1) and (V2, ‖ · ‖2) and a linear
operator T : V1 �→ V2:

Definition 3.5. (T is Bounded)

‖T ‖ := sup
‖v‖1=1

‖T v‖2 ∈ R

Definition 3.6. (Hyperbolic Banach Space) an hyperbolic normed linear space
(V, ‖ · ‖) which is complete as a metric space in the induced metric d(u, v) :=
‖u − v‖.

Definition 3.7. (Hyperbolic Hilbert Space) a triple (V, (·, ·), ‖ · ‖) such that:

• (V, (·, ·)) is an hyperbolic inner-product space
• (V, ‖ · ‖) is an hyperbolic Banach space•

∃c ∈ R+ : (‖(u, v)‖ ≤ c‖u‖‖v‖ ∀u, v ∈ V )

Remark 3.1. Let us observe that all the introduced notions of the form “hyper-
bolic x,” with x = linear space, normed linear space, Banach space, Hilbert space,
has not to be intended as particular cases of the respective notion x:

Since G is not a field, an hyperbolic linear space is not a linear space but only
a module over the ring G and so on.
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Example 3.2. Given the hyperbolic inner product space (Gn, (·, ·)) let us intro-
duce the hyperbolic Banach space (Gn, ‖ · ‖) defined as:

‖(x1 + jy1, . . . , xn + jyn)‖ :=
√√√√

n∑

i=1

(
x2

i + y2
i

)
(3.2)

Given x = (a1 + jb1, . . . , an + jbn) ∈ G
n and α = c + jd ∈ G one has that:

‖αx‖ =
√√√√

n∑

i=1

(
c2a2

i + c2b2
i + d2a2

i + d2b2
i + 4aibicd

)
(3.3)

‖α‖‖x‖ =
√√√√

n∑

i=1

(
c2a2

i + c2b2
i + d2a2

i + d2b2
i

)
(3.4)

Since:

2aibicd ≤ c2a2
i + d2b2

i (3.5)

2aibicd ≤ c2b2
i + d2a2

i (3.6)

it follows that:

‖αx‖ ≤
√

2‖α‖‖x‖ (3.7)

Furthermore, given x = (a1 + jb1, . . . , an + jbn), y = (c1 + jd1, . . . , cn +
jdn) ∈ G

n one has that:

‖(x, y)‖ =
√√√√

n∑

i=1

(
a2

i c
2
i + a2

i d
2
i + b2

i c
2
i + b2

i d
2
i − 4aibicidi

)
(3.8)

‖x‖‖y‖ =
√√√√

n∑

i=1

(
a2

i c
2
i + a2

i d
2
i + b2

i c
2
i + b2

i d
2
i

)
(3.9)

Since:

−2aibicidi ≤ a2
i c

2
i + b2

i d
2
i (3.10)

−2aibicidi ≤ a2
i d

2
i + b2

i c
2
i (3.11)

it follows that:

‖(x, y)‖ ≤
√

2‖x‖‖y‖ (3.12)
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(Gn, (·, ·), ‖ · ‖) is then an hyperbolic Hilbert space.

Example 3.3. Define L2(R, G) to be the set of hyperbolic valued measurable
functions on R that satisfy

∫ +∞
−∞ dx‖f (x)‖2 < +∞. Let us introduce:

(f, g) :=
∫ +∞

−∞
dxf̄ (x)g(x) (3.13)

and:

‖ψ‖ :=
√∫ +∞

−∞
dx‖ψ(x)‖2 (3.14)

One has that:

‖zψ‖ =
√∫ +∞

−∞
dx‖zψ(x)‖2 ≤

√
2

√∫ +∞

−∞
dx‖z‖2‖ψ(x)‖2

=
√

2‖z‖‖ψ‖ ∀z ∈ G,∀ψ ∈ L2(R, G) (3.15)

Furthermore one has that:

‖(f, g)‖ =
∣∣∣∣

∣∣∣∣
∫ +∞

−∞
dxf̄ (x)g(x)

∣∣∣∣

∣∣∣∣ ≤
∫ +∞

−∞
dx‖f̄ (x)g(x)‖

≤
√

2
∫ +∞

−∞
dx‖f̄ (x)‖‖g(x)‖ ≤

√
2

√∫ +∞

−∞
dx‖f (x)‖2

×
√∫ +∞

−∞
dx‖g(x)‖2 =

√
2‖f ‖‖g‖ ∀f, g ∈ L2(R, G) (3.16)

from which, using the fact that absolute convergence implies convergence, it
follows that:

(f, g) ∈ G ∀f, g ∈ L2(R, G) (3.17)

(L2(R, G), (·, ·), ‖ · ‖) is then an hyperbolic Hilbert space.
As to unbounded operators over an hyperbolic Hilbert space H let us observe

that, as in the analogous case of unbounded operators over a (complex) Hilbert
space (Reed and Simon, 1980), they will be usually defined only on a dense linear
subspace of H.

4. HYPERBOLIC QUANTUM MECHANICS

Hyperbolic numbers emerged in the research of one of the authors
(Khrennikov, 2003a, 2003b, 2004) as the underlying number system of a
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mathematical theory, “Hyperbolic Quantum Mechanics” formalized by the fol-
lowing axioms:

Axiom 4.1. The pure states of an hyperbolic quantum systems are rays on an
hyperbolic Hilbert space H

Axiom 4.2. Hyperbolic quantum mechanical observables are linear operators
on H having real spectrum. The expected value of the hyperbolic observable Ô in
a state ψ ∈ H such that (ψ,ψ) 	= 0 is given by:

Eψ (O) = (ψ,Oψ)

(ψ,ψ)
(4.1)

Axiom 4.3. The evolution of a pure state ψ0 ∈ H is described by the hyperbolic
analogue of Schrödinger’s equation:

j
dψ(t)

dt
= Hψ(t) , ψ(0) = ψ0 (4.2)

5. ABOUT VON NEUMANN UNIQUENESS THEOREM

Let us leave aside for a moment Hyperbolic Quantum Mechanics and let us
analyze the status of Von Neumann Uniqueness Theorem in ordinary (complex)
Quantum Mechanics.

Given an Hilbert space H, a dense linear subspace D of H and two linear
operators ˆ̃Q, ˆ̃P over H we will say that:

Definition 5.1. ( ˆ̃Q and ˆ̃P are a Representation of the Canonical Commutation
Relation Over D)

• D ⊆ D( ˆ̃Q) ∩ D( ˆ̃P ), ˆ̃QD ⊆ D, ˆ̃PD ⊆ D
• ([ ˆ̃Q, ˆ̃P ])[ψ] := ˆ̃Q[ψ] ˆ̃P [ψ] − ˆ̃P [ψ] ˆ̃Q[ψ] = iÎ [ψ] ∀ψ ∈ D

where Î is the identity operator over H.
Introduced the following operators on L2(R, C):

(Q̂qψ)(q) := qψ(q) (5.1)

(P̂qψ)(q) := −i
dψ(q)

dq
(5.2)

(where i is the usual complex imaginary unit such that i2 = −1) defined as the
closures of their restriction to the initial domain S(R, C), it may be easily verified
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that Q̂q and P̂q are a representation of the Canonical Commutation Relation called
the Schrödinger representation.

Von Neumann Uniqueness Theorem is often expressed in the Physics’ liter-
ature as the following:

Conjecture 5.1. (Naive Version of Von Neumann Uniqueness Theorem)

HP:

ˆ̃Q and ˆ̃P are a representation of the Canonical Commutation Relation
over the Hilbert space H
TH:

∃Û : H �→ L2(R, C) unitary : ˆ̃Q = Û−1Q̂qÛ and ˆ̃P = Û−1P̂qÛ

A mathematically more rigorous investigation allows anyway to infer that
(Thirring, 1981):

Theorem 5.1.

Conjecture 1 is false

Proof: Let us consider the following Hilbert space (l2(C), (·, ·)):

l2(C) := {{xn}∞n=1, xn ∈ C ∀n :
∞∑

n=1

|xn|2 < ∞} (5.3)

({xn}∞n=1, {yn}∞n=1) :=
∞∑

n=1

x̄nyn (5.4)

its dense linear subspace:

D := {{xn}∞n=1 ∈ l2(C) :
∞∑

n=1

xn = 0, with only finitely many xn 	= 0} (5.5)

Given the infinite-dimensional matrices:

ˆ̃Q := diagonal (N) (5.6)
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ˆ̃P := −i

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 −1 −1

2
−1

3
· · ·

1 0 −1 −1

2
· · ·

1

2
1 0 −1 · · ·

1

3

1

2
1 0 · · ·

...
...

...
...

. . .

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(5.7)

one has that ˆ̃Q and ˆ̃P are a representation over the dense linear subspace D of
the Canonical Commutation Relation unitarily inequivalent to the Schrödinger
representation.

For other contra-examples see Summers, 2001 and references therein �

Theorem 5. 1 has led most of the Mathematical Physics’ community to consider
representations not of the Canonical Commutation Relation but of the following
Weyl relation:

V̂1(t)V̂2(s) = exp(its)V̂2(s)V̂1(t) ∀t, s ∈ R (5.8)

of which the strongly continuous unitary groups {exp(it P̂q)}t∈R and
{exp(is Q̂q)}s∈R are indeed a representation, and to call Von Neumann Uniqueness
Theorem the following theorem (for whose proof we demand to (Reed and Simon,
1979)):

Theorem 5.2. (On the Uniqueness of Representations of Weyl Relation)

HP:

{V̂1(t)}t∈R, {V̂2(s)}s∈R one parameter strongly-continuous unitary group on a
separable Hilbert space H satisfying the Weyl relation

TH:
There are closed linear subspaces Hl such that:

• H = ⊕N
l=1Hl N ∈ N+ ∪ {∞}

• Û (t) : Hl �→ Hl , V̂ (s) : Hl �→ Hl ∀s, t ∈ R

• ∀l, ∃T̂l : Hl �→ L2(R, C) unitary : T̂lÛ (t)T̂ −1
l = exp (it P̂q) and T̂l V̂ (s)

T̂ −1
l = exp(is Q̂q)

It is anyway possible to insist on working with the Canonical Commutation
Relation provided one adds further hypotheses to the Conjecture 5.1 under which
it becomes a theorem.
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The first step in this direction is rather trivial, consisting simply in getting rid
of the reducibility of representations:

given a dense linear subspace D of H:

Definition 5.3. ( ˆ̃Q and ˆ̃P are a Self-adjoint Irreducible Representation of the
Canonical Commutation Relation Over D)

• ˆ̃Q and ˆ̃P are self-adjoint
• ˆ̃Q and ˆ̃P are a representation of the Canonical Commutation Relation

over D
• 	 ∃Idense linear subspace ofD : (exp(is ˆ̃Q)I ⊆ I ∀s ∈ R) or (exp(it ˆ̃P ) I ⊆
I ∀t ∈ R)

Among the many possibilities one is the following (Summers, 2001):

Theorem 5.3. (Von Neumann Uniqueness Theorem (in Weakened Dixmier’s
Form))

HP:

ˆ̃Q and ˆ̃P are a self-adjoint irreducible representation of the Canonical Commuta-

tion Relation over a dense linear subspace D of an Hilbert space H such that ˆ̃Q

and ˆ̃P are closed and the restriction of ˆ̃Q
2 + ˆ̃P

2
to D is essentially self-adjoint

TH:

∃Û : H �→ L2(R, C) unitary : ˆ̃Q = Û−1Q̂qÛ and ˆ̃P = Û−1P̂qÛ

The Schrödinger representation of the Canonical Commutation Relation is
also called the position representation.

Let us now introduce the following operators:

(Q̂pψ)(p) := +i
dψ(p)

dp
(5.9)

(P̂pψ)(p) := pψ(p) (5.10)

defined as the closures of their restriction to the initial domain S(R, C).
It may be easily verified that Q̂p and P̂p are an irreducible self-adjoint

representation of the Canonical Commutation Relation, called the momentum
representation, over a dense linear subspace of L2(R, C) over which Q̂2

p + P̂ 2
p is

essentially self-adjoint.
Applying Theorem 5.3 it follows that:
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Corollary 5.1. (On the Unitarily Equivalence of the Position and Momentum
Representations)

∃Û : H �→ L2(R, C) unitary : Q̂p = Û−1Q̂qÛ and P̂p = Û−1P̂qÛ

Indeed the unitary of Corollary 5.1 is nothing but the usual (complex) Fourier
transform.

6. POSITION AND MOMENTUM REPRESENTATIONS OF THE
HYPERBOLIC CANONICAL COMMUTATION RELATION

Given the Hyperbolic Canonical Commutation Relation:

[q̂, p̂] = j Î (6.1)

let us consider its position representation in L2(R, G):

(q̂qψ)(q) := qψ(q) (6.2)

(p̂qψ)(q) := −j
dψ(q)

dq
(6.3)

and its momentum representation in L2(R, G):

(q̂pψ)(p) := +j
dψ(p)

dp
(6.4)

(p̂pψ)(p) := pψ(p) (6.5)

where all the operators are defined as the closures of their restriction on the initial
domain S(R, G).

We will prove the following:

Theorem 6.1. (On the Unitarily Inequivalence of the Hyperbolic Position and
Momentum Representations)

	 ∃Û : L2(R, G) �→ L2(R, G) unitary :

q̂p = Û−1q̂q Û

p̂p = Û−1p̂qÛ

Proof: Owing to Theorem B.1 we know that the required Û is not the Fourier
transform as instead occurs in Quantum Mechanics.

Let us now follow for a moment the non-rigorous Dirac bra-ket formalism.
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Starting with:

〈q|q̂|α〉 = q〈q|α〉 (6.6)

〈q|p̂|α〉 = −j
d

dq
〈q|α〉 (6.7)

one has in particular that:

〈q|p̂|p〉 = −j
d

dq
〈q|p〉 (6.8)

and hence:
[
j

d

dq
+ p

]
〈q|p〉 = 0 (6.9)

from which it follows that:

〈q|p〉 = c exp(−jpq) c ∈ G (6.10)

But then one has that:

〈p|q̂|α〉 =
∫ +∞

−∞
dq〈p|q〉〈q|q̂|α〉 = c̄

∫ +∞

−∞
dq exp(jpq)〈q|q̂|α〉

= c̄

∫ +∞

−∞
dq exp(jpq)q〈q|α〉 = c̄

j

d

dp

∫ +∞

−∞
dq exp(jpq)〈q|α〉

= j
d

dp

∫ +∞

−∞
dq〈p|q〉〈q|α〉 = +j

d

dp
〈p|α〉 = (q̂pψ|α〉)(p) (6.11)

where we have used Eq. (6.10) and the completeness condition for position au-
tokets:

∫ +∞

−∞
dq|q〉〈q| = Î (6.12)

Equation (6.11) implies that:

q̂p[f ] = (F q̂qF−1)[f ] ∀f ∈ N [F] (6.13)

p̂p[f ] = (F p̂qF−1)[f ] ∀f ∈ N [F] (6.14)

where:

N [F] := {f ∈ D(F) : F[f ] ∈ S(R, G)} (6.15)

So, assuming ad absurdum the existence of a unitary Û : L2(R, G) �→ L2(R, G):

q̂p = Û−1q̂q Û (6.16)

p̂p = Û−1p̂qÛ (6.17)
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one should have that Û |N[F ] = F−1. �

The same formulation of a conjecture claiming the existence an an
analogous of Theorem 5.3 for operators on an hyperbolic Hilbert space
would be an highly not trivial task owing to the peculiarities of self-
adjoint operators on such a space discussed in the Appendix C.

Theorem 6.1, anyway, automatically implies that such a conjecture would
be false, i.e. that Von Neumann Uniqueness Theorem doesn’t hold in Hyperbolic
Quantum Mechanics.

In fact, if an hyperbolic quantum mechanical analogous of Theorem 5.3
existed, it would imply the violation of Theorem 6.1.

APPENDIX A: HYPERBOLIC FUNCTIONS AT RAPID DECREASE AND
HYPERBOLIC TEMPERED DISTRIBUTIONS

Definition A.1. (Hyperbolic Functions of Rapid Decrease)

S(R, G) : =
{
f : R → Ginfinitely differentiable : ‖f ‖n,m :

= sup
x∈R

∥∥∥∥xn dm

dxm
f (x)

∥∥∥∥ < ∞ ∀n,m ∈ N+

}

Let us endowS(R, G) with the natural topology induced by the seminorms ‖ · ‖n,m.

Definition A.2. (Space of Hyperbolic Tempered Distributions)

S ′(R, G) := topological-dual[S(R, G)]

In particular let us introduce the following:

Definition A.3. (Hyperbolic Dirac Delta)

δ ∈ S ′(R, G) : δ[f ] := f (0)

Given an hyperbolic tempered distribution λ ∈ S ′(R, G), a family of func-
tions fα : R → G for every α ∈ I := [a, b] with a, b ∈ [0,+∞], a measure µ on
(R,B(R)) and a number ᾱ ∈ I :

Definition A.4. (fα Is a Limit-Represention of λ with Respect to µ for α → ᾱ

(REPµ − limα→ᾱ fα = λ)
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lim
α→ᾱ

∫
dµ(x)fα(x)φ(x) = λ[φ] ∀φ ∈ S(R, G) (A.1)

Let us now consider the family of functions:

fα(x) :=
∫ α

−α

dp exp(jpx) = 2 sinh(αx)

x
(A.2)

One has that:
Theorem A.1.

REPµLebesgue − lim
α→+∞ fα 	= δ

Proof: Let us consider the test function φ(x) := exp(−x2).
Since:

∫ α

−α

dp exp(jpx − x2) (A.3)

doesn’t converge to φ(0) = 1 as α → ∞ the thesis follows �

One has that:
Theorem A.2. (Embedding Theorem)

S(R, G) ⊂ L2(R, G) ⊂ S ′(R, G)

Proof: Every function f ∈ S(R, G) can be identified with the functional f [·] ∈
S ′(R, G) defined as:

f [g] :=
∫ +∞

−∞
dx g(x)f (x) (A.4)

From the other side one has that:

(‖f ‖n,m < +∞∀n,m ∈ N+) ⇒
∫ +∞

−∞
dx‖f (x)‖2 ∈ (−∞,+∞) (A.5)

and hence f ∈ L2(R, G) �

APPENDIX B. THE HYPERBOLIC FOURIER TRANSFORM

Let us introduce the following:

Definition B.1. (Hyperbolic Fourier Transform:)
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the functional F : D(F) �→ MAPS(R, G):

D(F) := {f ∈ S(R, G) : ∃finite
∫ +∞

−∞
dx exp(−jpx)f (x)}

(F[f ])(p) :=
∫ +∞

−∞
dx exp(−jpx)f (x)

Let us observe that:

Proposition B.1.

F[D(F)] 	⊆ S(R, G)

Proof: Given the function f (x) := 1√
2π

exp(− x2

2 ) ∈ S(R, G) one has that:

F[f ](p) = exp(
p2

2
) /∈ S(R, G) (B.1)

�

Proposition 5.1 implies that:

Theorem B.1. (No Hyperbolic Plancherel Theorem:)
F doesn’t extend uniquely to a unitary Û : L2(R, G) �→ L2(R, G)

APPENDIX C: SELF-ADJOINT OPERATORS ON AN HYPERBOLIC
HILBERT SPACE

Let (X, ‖ · ‖X) and (Y, ‖ · ‖Y ) be hyperbolic Banach spaces. Given a bounded
linear operator T : X �→ Y let us introduce the following:

Definition C.1. (Hyperbolic Banach Space Adjoint of T)
the operator T ′ : Y 
 �→ X
:

(T ′l)(x) := l(T x) l ∈ Y 
, x ∈ X (C.1)

Let us now consider an hyperbolic Hilbert space (H, (·, ·), ‖ · ‖). The hyper-
bolic Banach space adjoint of a bounded linear operator T : H �→ H is then an
operator T ′ : H
 �→ H
.

Let us now consider the map C : H �→ H
 which assigns to each y ∈ H the
linear functional (y, ·) ∈ H
.
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The key difference with respect to the analogous situation on an Hilbert space
(Reed and Simon, 1980) is that in our case there is no analogue of Riesz Lemma
and hence nobody assures us that C is surjective.

We are thus led to the following:

Definition C.2. (Hyperbolic Hilbert Space Adjoint of T)
the operator T † : D(T †) �→ H:

T † := C−1T ′C (C.2)

where D(T †) is the linear subspace of H where C−1T ′C is well-defined.
The notion of hyperbolic Hilbert space adjoint can be extended to unbounded

operators in the following way:
given an unbounded linear operator T defined on a dense subspace D(T) of

an hyperbolic Hilbert space H:

Definition C.3. (Hyperbolic Hilbert Space Adjoint of T)
the operator T † : D(T †) �→ H:

D(T †) := {φ ∈ H : (∃!ηφ ∈ H : (T ψ, φ) = (ψ, ηφ) ∀ψ ∈ D(T ))}

T †φ := ηφ

Definition C.4. (T is Self-Adjoint)

D(T ) = D(T †) and T = T †

A standard theorem of Functional Analysis asserts that the spectrum of a
self-adjoint operator on an Hilbert space is a subset of the real line (Reed and
Simon, 1980).

This is no more true as to self-adjoint operators on a hyperbolic Hilbert space
as we will show in the simplest case H = G

2.
Let us introduce at this purpose the following useful bijection T : Mn(G) �→

Mn(C):

T
({xi,j + jyi,j }ni,j=1

)
:= {xi,j + iyi,j }ni,j=1 (C.3)

Given:

A :=
(

x11 + jy11 x12 + jy12

x21 + jy21 x22 + jy22

)
∈ M2(G) (C.4)
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one has that:

A† = Āt =
(

x11 − jy11 x21 − jy21

x12 − jy12 x22 − jy22

)
(C.5)

Let us introduce the set of self-adjoint matrices:

SA2(G) := {A ∈ M2(G) : A† = A} (C.6)

Clearly one has that:

A ∈ SA2(G) ⇔ y11 = 0 and y22 = 0 and x12 = x21 and y12 = −y21 (C.7)

so that the generic matrix A ∈ SA2(G) is of the form:

A =
(

x11 x12 + jy12

x12 − jy12 x22

)
(C.8)

Let us compare the eigenvalue equation of A and T(A). For the latter the equation:

det (T (A) − λI ) = 0 (C.9)

has solution:

λ =
x11 + x22 ±

√
(x11 − x22)2 + 4x2

12 + 4y2
12

2
(C.10)

and since the discriminant � := (x11 − x22)2 + 4x2
12 + 4y2

12 ≥ 0:

• if � := (x11 − x22)2 + 4x2
12 + 4y2

12 > 0 then T(A) has 2 real eigenvalues:

λ1 = x11 + x22 + √
�

2
∈ R (C.11)

λ2 = x11 + x22 − √
�

2
∈ R (C.12)

• if � := (x11 − x22)2 + 4x2
12 + 4y2

12 = 0 then T(A) has 1 real eigenvalue:

λ = x11 + x22

2
∈ R (C.13)

As to A, instead, the equation:

det (A − λI ) = 0 (C.14)

has solution:

λ =
x11 + x22 ±

√
(x11 − x22)2 + 4x2

12 − 4y2
12

2
(C.15)

If follows that:
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• if � := (x11 − x22)2 + 4x2
12 − 4y2

12 > 0 then A has 4 eigenvalues of which
only two are reals:

λ1 = x11 + x22 + √
�

2
∈ R (C.16)

λ2 = x11 + x22 − √
�

2
∈ R (C.17)

λ3 = x11 + x22 + j
√

�

2
/∈ R (C.18)

λ4 = x11 + x22 − j
√

�

2
/∈ R (C.19)

• if � := (x11 − x22)2 + 4x2
12 − 4y2

12 = 0 then A has 1 real eigenvalue:

λ = x11 + x22

2
∈ R (C.20)

• if � := (x11 − x22)2 + 4x2
12 − 4y2

12 < 0 then A has no eigenvalues

In particular we have shown that a matrix A ∈ SA2(G) cannot be always
diagonalized, a fact that by itself proves that the Spectral Theorem doesn’t hold
for self-adjoint operators on an hyperbolic Hilbert space.

This fact implies that given a linear operator A on an Hyperbolic Hilbert
space:

• if A is bounded, the exponential of A can be defined by power-series:

exp(j tA) :=
∞∑

n=0

(j t)nAn

n!
(C.21)

• if A is unbounded, not only the exponential of A cannot be defined by
power series (as occurs also for an unbounded operator on a (complex)
Hilbert space), but one cannot use the functional calculus form of the
Spectral theorem; it follows that no definition of exp(j tA) can be given in
this way.

As a consequence it follows that no analogue exists on an Hyperbolic Hilbert
Space of the Stone Theorem that on a (complex) Hilbert space states the exis-
tence of a bijection between self-adjoint operators and strongly-continuous unitary
groups associating to each self-adjoint operator A the strongly-continuous unitary
group {exp(it A)}t∈R.
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